5 resultados para Gold standard

em Digital Commons at Florida International University


Relevância:

60.00% 60.00%

Publicador:

Resumo:

Respiratory gating in lung PET imaging to compensate for respiratory motion artifacts is a current research issue with broad potential impact on quantitation, diagnosis and clinical management of lung tumors. However, PET images collected at discrete bins can be significantly affected by noise as there are lower activity counts in each gated bin unless the total PET acquisition time is prolonged, so that gating methods should be combined with imaging-based motion correction and registration methods. The aim of this study was to develop and validate a fast and practical solution to the problem of respiratory motion for the detection and accurate quantitation of lung tumors in PET images. This included: (1) developing a computer-assisted algorithm for PET/CT images that automatically segments lung regions in CT images, identifies and localizes lung tumors of PET images; (2) developing and comparing different registration algorithms which processes all the information within the entire respiratory cycle and integrate all the tumor in different gated bins into a single reference bin. Four registration/integration algorithms: Centroid Based, Intensity Based, Rigid Body and Optical Flow registration were compared as well as two registration schemes: Direct Scheme and Successive Scheme. Validation was demonstrated by conducting experiments with the computerized 4D NCAT phantom and with a dynamic lung-chest phantom imaged using a GE PET/CT System. Iterations were conducted on different size simulated tumors and different noise levels. Static tumors without respiratory motion were used as gold standard; quantitative results were compared with respect to tumor activity concentration, cross-correlation coefficient, relative noise level and computation time. Comparing the results of the tumors before and after correction, the tumor activity values and tumor volumes were closer to the static tumors (gold standard). Higher correlation values and lower noise were also achieved after applying the correction algorithms. With this method the compromise between short PET scan time and reduced image noise can be achieved, while quantification and clinical analysis become fast and precise.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Three-Dimensional (3-D) imaging is vital in computer-assisted surgical planning including minimal invasive surgery, targeted drug delivery, and tumor resection. Selective Internal Radiation Therapy (SIRT) is a liver directed radiation therapy for the treatment of liver cancer. Accurate calculation of anatomical liver and tumor volumes are essential for the determination of the tumor to normal liver ratio and for the calculation of the dose of Y-90 microspheres that will result in high concentration of the radiation in the tumor region as compared to nearby healthy tissue. Present manual techniques for segmentation of the liver from Computed Tomography (CT) tend to be tedious and greatly dependent on the skill of the technician/doctor performing the task. ^ This dissertation presents the development and implementation of a fully integrated algorithm for 3-D liver and tumor segmentation from tri-phase CT that yield highly accurate estimations of the respective volumes of the liver and tumor(s). The algorithm as designed requires minimal human intervention without compromising the accuracy of the segmentation results. Embedded within this algorithm is an effective method for extracting blood vessels that feed the tumor(s) in order to plan effectively the appropriate treatment. ^ Segmentation of the liver led to an accuracy in excess of 95% in estimating liver volumes in 20 datasets in comparison to the manual gold standard volumes. In a similar comparison, tumor segmentation exhibited an accuracy of 86% in estimating tumor(s) volume(s). Qualitative results of the blood vessel segmentation algorithm demonstrated the effectiveness of the algorithm in extracting and rendering the vasculature structure of the liver. Results of the parallel computing process, using a single workstation, showed a 78% gain. Also, statistical analysis carried out to determine if the manual initialization has any impact on the accuracy showed user initialization independence in the results. ^ The dissertation thus provides a complete 3-D solution towards liver cancer treatment planning with the opportunity to extract, visualize and quantify the needed statistics for liver cancer treatment. Since SIRT requires highly accurate calculation of the liver and tumor volumes, this new method provides an effective and computationally efficient process required of such challenging clinical requirements.^

Relevância:

60.00% 60.00%

Publicador:

Resumo:

For children with intractable seizures, surgical removal of epileptic foci, if identifiable and feasible, can be an effective way to reduce or eliminate seizures. The success of this type of surgery strongly hinges upon the ability to identify and demarcate those epileptic foci. The ultimate goal of this research project is to develop an effective technology for detection of unique in vivo pathophysiological characteristics of epileptic cortex and, subsequently, to use this technology to guide epilepsy surgery intraoperatively. In this PhD dissertation the feasibility of using optical spectroscopy to identify uniquein vivo pathophysiological characteristics of epileptic cortex was evaluated and proven using the data collected from children undergoing epilepsy surgery. ^ In this first in vivo human study, static diffuse reflectance and fluorescence spectra were measured from the epileptic cortex, defined by intraoperative ECoG, and its surrounding tissue from pediatric patients undergoing epilepsy surgery. When feasible, biopsy samples were taken from the investigated sites for the subsequent histological analysis. Using the histological data as the gold standard, spectral data was analyzed with statistical tools. The results of the analysis show that static diffuse reflectance spectroscopy and its combination with static fluorescence spectroscopy can be used to effectively differentiate between epileptic cortex with histopathological abnormalities and normal cortex in vivo with a high degree of accuracy. ^ To maximize the efficiency of optical spectroscopy in detecting and localizing epileptic cortex intraoperatively, the static system was upgraded to investigate histopathological abnormalities deep within the epileptic cortex, as well as to detect unique temporal pathophysiological characteristics of epileptic cortex. Detection of deep abnormalities within the epileptic cortex prompted a redesign of the fiberoptic probe. A mechanical probe holder was also designed and constructed to maintain the probe contact pressure and contact point during the time dependent measurements. The dynamic diffuse reflectance spectroscopy system was used to characterize in vivo pediatric epileptic cortex. The results of the study show that some unique wavelength dependent temporal characteristics (e.g., multiple horizontal bands in the correlation coefficient map γ(λref = 800 nm, λcomp ,t)) can be found in the time dependent recordings of diffuse reflectance spectra from epileptic cortex defined by ECoG.^

Relevância:

60.00% 60.00%

Publicador:

Resumo:

OBJECTIVE: To evaluate the validity of hemoglobin A1C (A1C) as a diagnostic tool for type 2 diabetes and to determine the most appropriate A1C cutoff point for diagnosis in a sample of Haitian-Americans. SUBJECTS AND METHODS: Subjects (n = 128) were recruited from Miami-Dade and Broward counties, FL. Receiver operating characteristics (ROC) analysis was run in order to measure sensitivity and specificity of A1C for detecting diabetes at different cutoff points. RESULTS: The area under the ROC curve was 0.86 using fasting plasma glucose ≥ 7.0 mmol/L as the gold standard. An A1C cutoff point of 6.26% had sensitivity of 80% and specificity of 74%, whereas an A1C cutoff point of 6.50% (recommended by the American Diabetes Association – ADA) had sensitivity of 73% and specificity of 89%. CONCLUSIONS: A1C is a reliable alternative to fasting plasma glucose in detecting diabetes in this sample of Haitian-Americans. A cutoff point of 6.26% was the optimum value to detect type 2 diabetes.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Respiratory gating in lung PET imaging to compensate for respiratory motion artifacts is a current research issue with broad potential impact on quantitation, diagnosis and clinical management of lung tumors. However, PET images collected at discrete bins can be significantly affected by noise as there are lower activity counts in each gated bin unless the total PET acquisition time is prolonged, so that gating methods should be combined with imaging-based motion correction and registration methods. The aim of this study was to develop and validate a fast and practical solution to the problem of respiratory motion for the detection and accurate quantitation of lung tumors in PET images. This included: (1) developing a computer-assisted algorithm for PET/CT images that automatically segments lung regions in CT images, identifies and localizes lung tumors of PET images; (2) developing and comparing different registration algorithms which processes all the information within the entire respiratory cycle and integrate all the tumor in different gated bins into a single reference bin. Four registration/integration algorithms: Centroid Based, Intensity Based, Rigid Body and Optical Flow registration were compared as well as two registration schemes: Direct Scheme and Successive Scheme. Validation was demonstrated by conducting experiments with the computerized 4D NCAT phantom and with a dynamic lung-chest phantom imaged using a GE PET/CT System. Iterations were conducted on different size simulated tumors and different noise levels. Static tumors without respiratory motion were used as gold standard; quantitative results were compared with respect to tumor activity concentration, cross-correlation coefficient, relative noise level and computation time. Comparing the results of the tumors before and after correction, the tumor activity values and tumor volumes were closer to the static tumors (gold standard). Higher correlation values and lower noise were also achieved after applying the correction algorithms. With this method the compromise between short PET scan time and reduced image noise can be achieved, while quantification and clinical analysis become fast and precise.